
Abstract. The concept of local symmetry has been
applied to faces of planar sites such as carbon±carbon
double bonds and aromatic rings with the principal
results being as follows. The two faces of a planar site
must have the same local symmetry group. This local
symmetry group is limited to the polar point groups. For
cyclic compounds, directed cycles must have chirotopic
faces although the reverse is not necessarily true:
chirotopic faces are possible for both directed and
undirected cycles. A number of examples are provided to
illustrate these results.
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In recent years, the application of symmetry concepts in
organic synthesis has become a vigorous ®eld of research
[1]. The presence of symmetry in a complex molecule
often simpli®es its synthesis: a large symmetric molecule
can sometimes be synthesized by the joining of two or
more molecules of a ``monomer''. Symmetry is also an
important property of reactants and synthetic interme-
diates: in general, a smaller number of symmetry-distinct
reaction sites results in fewer di�erent products. In
connection with this, the concept of local symmetry and
local chirality is of signi®cant interest to synthetic
chemists and many chemists do indeed have an intuitive
awareness of this concept.

The essence of this concept has existed for a long
time. More than a century ago, Curie [2] studied the
relation between the symmetry of an ensemble of objects
and the symmetries of the individual objects. The con-
cept is also well established in crystallography, as evi-
denced by the terms ``special positions'' and ``site
symmetry'' [3]. In 1984, Mislow and Siegel [4] recast the
concept of local symmetry and local chirality speci®cally
for molecular segments. In theory, this concept is ap-
plicable to all points and segments of a molecule, in-
cluding faces; however, during the 16 years since the

introduction of the local symmetry concept, we have not
encountered any description of molecular faces in terms
of their local symmetry. Here we explore the application
of the local symmetry concept to the faces of planar
sites, such as carbon±carbon double bonds, aromatic
rings, etc., and describe their symmetry properties.

In this work, we will be concerned exclusively with
approximately planar or two-faced sites such as carbon±
carbon double bonds. We will not deal here with the
faces of entities such as cubes or dodecahedra that may
naturally be considered many-faced. This does not
curtail the range of application of the present theory
seriously, since molecular polyhedra (e.g. cubane, do-
decahedrane, fullerenes) are relatively uncommon in
organic chemistry in comparison to planar entities such
as carbonyl groups or carbon±carbon double bonds.

De®nition: A molecular face is the entire region (also
conveniently referred to as a half-space) on either side of
a single plane imagined to pass through the molecule.

The term half-space should not be interpreted too lit-
erally. A plane slices all space into two parts which we call
half-spaces in the sense that, together, they span all space.
The atomic or chemical contents of these half-spaces need
not be the same, nor do they need to be symmetry-related.

In order that our de®nition of a molecular face be
useful, the position of the slicing plane should be chosen in
a chemically reasonable fashion. For instance, the slicing
planemay be identi®ed with the best-®t plane of the nuclei
constituting the planar site; however, the choice of the
slicing plane is strictly a matter of chemical convenience
and it does not in any way a�ect the validity of the
theorems stated below.

De®nition: The local symmetry group of a molecular face
consists of all those elements of the molecular point
group whose operation leaves the face invariant or
indistinguishable from its original condition.1
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1 Based on the recently proven holographic electron density
theorem [5], an improvement on the Hohenberg±Kohn theorem,
it is now proven that local-only symmetry cannot exist and that the
local (submolecular) symmetry necessarily implies global (molecu-
lar) symmetry [6]
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Obviously, the position of the slicing plane will be a
factor in determining what the local symmetry group of
the two faces will be. The following result is slightly
more subtle.

Theorem 1: A single plane (whatever its position or
orientation) must divide a molecule into two faces or
half-spaces whose local symmetry groups are the same.

It is important to appreciate that the local symmetry
group is necessarily a subgroup of the molecular point
group, i.e. a molecular segment cannot have a symmetry
element that is not present in the whole molecule. A
segment's local symmetry group describes its symmetry
in situ, i.e. in the context of its environment within the
whole molecule. A segment's local symmetry group must
re¯ect not only the symmetry of its distribution of
atomic nuclei, but also that of its electron distribution.

Proof: LetX andY denote the two faces or half-spaces
of a molecule, M. By the de®nition of local symmetry,
every element in the local symmetry group of X and of Y
must also be an element of the point group of M.

Suppose that the local symmetry group of X contains
some element x1 that is not included in the local sym-
metry group of Y. Operation of x1 on the molecule will
leave X invariant but will leave Y in a state distin-
guishable from its original one. This in turn means that
operation of x1 will leave M in a state distinguishable
from its original one; however, this contradicts our ac-
cepted premise that x1 is a symmetry operation of M.
Therefore, X cannot have any element in its local sym-
metry group that Y does not have. In other words X and
Y must have the same local symmetry group.

As a practical illustration of this theorem, we can
consider the double bond epoxidation reaction. Theo-
rem 1 implies that the epoxide products resulting from
epoxidation of the two faces of an arbitrary double bond
should have the same molecular point groups.2 This
result holds regardless of whether the faces of the sub-
strate double bond are homotopic, for example, ethylene
or (Z)-2-butene, enantiotopic, for example, (E)-2-bu-
tene, or symmetry-distinct, for example, norbornene.

A pertinent question at this point is whether any
limitations to the local symmetry groups are possible for
the faces of planar sites. It is easy to ®nd by inspection
and it is also intuitively reasonable that the two faces of
a carbon±carbon double bond can never have local
symmetry groups such as Oh, Td , or Dn. Indeed, only
certain local symmetry groups are possible for a generic
molecular face. To state this precisely, we recapitulate
the de®nition of a polar point group.

De®nition [7]: A polar point group is one which does not
include the following symmetry elements or combina-
tions of symmetry elements.

1. An inversion center (i � S2).
2. An improper axis of symmetry, Sn�n > 2�.

3. Intersecting proper axes of symmetry.
4. A plane of symmetry intersecting a proper axis.

It is easy to see that the presence of these symmetry
elements precludes the presence of an electric dipole
moment in the molecule. The following point groups are
polar: C1, Cn (n > 1), Cs, and Cnv (n > 1).

Theorem 2: The local symmetry group of a molecular
face must be a polar point group.

Proof: We remind ourselves that a molecular face,
symbolized X, is the entire space, including its chemical
content (i.e. electrons and atomic nuclei), on either side
of an imaginary plane, P, slicing a molecule, M. Let Hx
be the local symmetry group of the face X.

The maximum symmetry of a plane, embedded in
isotropic three-dimensional space, about an arbitrary
point is D1h, and this holds when the point lies in the
plane (the C1 axis being perpendicular to the plane).
The subgroup of symmetry operations of this D1h
group, under which the plane's two sides are not inter-
changed, is C1v.

Since the plane P is the boundary surface of the face
X, P must remain invariant under every symmetry op-
eration of the local symmetry group Hx. Also, the two
sides of Pmust not be interchanged under any symmetry
operation of the group Hx. Therefore, in view of the last
paragraph, Hx must be a subgroup of C1v, which is itself
a polar group. (The face X in general has lower sym-
metry than C1v because of the symmetry-lowering e�ect
of its chemical content.) X is therefore limited to C1, Cn
(n > 1), Cs, and Cnv (n > 1).

Following established terminology [4], we designate
faces with chiral local symmetries as chirotopic and
those with achiral local symmetries as achirotopic. From
theorem 2, we see that the local symmetries possible for
chirotopic faces are C1 or Cn (n � 1) and those possible
for achirotopic faces are Cs and Cnv (n � 1). In other
words, the local symmetry groups possible for the faces
of planar sites are quite limited. Since a chiral molecular
point group cannot have an achiral local symmetry
group as its subgroup, only achiral molecules can have
achirotopic faces. Chirotopic faces can be present in
both achiral and chiral molecules.

As an interesting example of molecular facial sym-
metry, let us consider the chiral complex, tricarbon-
yl[hexakis(dimethylsilyl)benzene]chromium, reported by
Mislow and coworkers [7]. The special characteristic of
the hexakis(dimethylsilyl)benzene ligand is that steric
congestion forces all the dimethylsilyl groups to point in
the same direction, resulting in a ``gear-meshed'' C6h
molecular geometry, as distinct from the D6h symmetry
of benzene, and chirotopic C6-symmetric arene faces.
Tricarbonyl[hexakis(dimethylsilyl)benzene]chromium
was found to have perfect crystallographic C3 symmetry.

Finally, we examine the facial symmetries of cyclic
molecules. According to Mislow [7], ``a cycle is de®ned
by three or more non-collinear points in the molecule. A
cycle is undirected if it is bisected by a molecular C2n axis
in, or by a molecular s plane perpendicular to, the mean
plane of the cycle. Otherwise it is directed.'' Thus the
benzene ring in the hexakis(dimethylsilyl)benzene is a

2More precisely, this statement must hold except in the rather
uncommon case that the epoxidation introduces a new symmetry
element in the molecule

158



directed cycle. We de®ne a cycle's face as the entire
region (or half-space) on either side of the mean plane
of the cycle.

Because a directed cycle cannot be bisected by a C2n
axis, it can only have enantiotopic or symmetry-distinct
faces, but not homotopic ones. Similarly, an undirected
cycle can only have homotopic or symmetry-distinct
faces, but not enantiotopic ones. A face of an undirected
cycle may belong to any of the local symmetry groups,
C1, Cn (n > 1), Cs, or Cnv (n > 1); however, since a di-
rected cycle must not be bisected by mirror planes per-
pendicular to its mean plane, its faces cannot belong to
the local symmetry groups Cs or Cnv (n > 1). We thus
arrive at the interesting result that a directed cycle must
have chirotopic faces of local symmetry groups C1 or Cn
(n > 1). The converse, however, is not true: a cycle with
chirotopic faces is not necessarily directed. For instance,
the six oxygen atoms of the 2,2¢-binaphthyl-based
D3-symmetric crown ether (depicted below) may be
regarded as an undirected cycle (on account of the
molecular C2 axes), but the faces of this cycle are chi-
rotopic with C3 local symmetry. [8]

An interesting case of cyclic directionality is furnished
by some chiral cobalt etioporphyrin I complexes pre-
pared by Konishi et al. [9] in the course of a study on the
mechanism of transfer of alkyl and aryl groups between
cobalt and nitrogen. A four-coordinate metal complex
(i.e. without axial ligands) of etioporphyrin I has time-

averaged C4h symmetry and therefore has enantiotopic
faces. This contrasts with the octaethylporphyrinato li-
gand, which has time-averaged D4h symmetry and achi-
rotopic C4v-symmetric faces. The cyclic directionality of
the etioporphyrin I ligand translates directly into the
chirotopicity of its faces and the chirality and enan-
tomerism of its CoIII-Cl complexes, as depicted below.

In summary, we have applied the concept of local
symmetry to molecular faces and found that they have
some simple symmetry properties. It is hoped that wider
appreciation of symmetry concepts such as those for-
mulated here will stimulate organic chemists to further
exploit symmetry in their synthetic work.
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